My last blog post covered why and how the automotive sector is changing fast over the last few years – you can find that post here. A common expectation is that our future cars will be connected, automated, shared, and electric. In a current Motional Consumer Mobility report, Americans were asked what is their most important consideration to use a self-driving vehicle. Nearly two-thirds of Americans (65 percent) say safety is the most important consideration when deciding to use a self-driving vehicle. So let’s take a closer look at automotive functional safety and how to deliver a safe product.
Safety Considerations for Product Design
Modern cars are a complex piece of technology. They are connected, have sophisticated Infotainment Systems (IVI) and Advanced Driver Assistance Systems (ADAS). You will be surprised about the amount of software used in the 30 to 70 electronic control units in a car. There are up to 100 million lines of code deployed in a modern high-end car today. System complexity will increase even more when we move beyond ADAS-supported driving to Automated Driving Systems (ADSs) in the future.
The challenge for the industry is that new potential hazards may arise with the increasing use of electronics and software in cars. Apart from complex technology and consumers’ expectations, we will get regulations covering the safety of future cars. In the U.S., this is the responsibility of the National Highway Traffic Safety Administration (NHTSA).
Defined by the Vehicle Safety Act in 1966, the NHTSA has the sole authority to make final decisions on rules and safety standards for future road vehicles. Once the NHTSA establishes a standard, the Agency is required to ensure that manufacturers comply when producing new vehicles.
In 2016 the NHTSA published “Vision for Safety,” a non-regulatory approach to automated vehicle technology safety. “Entities are encouraged to follow a robust design and validation process based on a systems-engineering approach to design ADSs free of unreasonable safety risks. The overall process should adopt and follow industry standards, such as the functional safety process standard for road vehicles…”
Which industry standard is the NHTSA referring to?
The mentioned standard is the ISO 26262 standard. First issued by International Organization for Standardization (ISO) in 2011 and later updated in 2018. The ISO 26262 is titled “Road vehicles – functional safety,” the first comprehensive voluntary industry standard for safety engineering of Electrical and Electronic Systems (E/E) in road vehicles. This standard recognizes that safety is a system attribute and can be addressed using systems engineering methods. ISO 26262 emphasizes the importance of implementing a safety engineering management and fostering a safety culture.
What is functional safety and how to comply?
Functional safety is defined as the “absence of unreasonable risk due to hazards caused by malfunctioning behavior of electrical/electronic systems.” The goal of ISO 26262 is to ensure safety from the earliest concept to the point when the vehicle is retired. To ensure vehicle safety, the standard outlines an automotive safety life cycle that describes the entire production life cycle.
Specific steps are required in each phase of the safety life cycle. One of the most important steps at the beginning of the safety life cycle is the Hazard & Risk Analysis of potential hazards (HARA). The result is an Automotive Safety Integrity Level (ASIL) classification of the hazard and the formulation of an overall safety goal. Safety goals are basically the level of safety required by a system or component to function without posing any threats to the vehicle.
An ASIL is assigned by evaluating three risk parameters, severity, exposure, and controllability. Severity defines the consequences to the life of people due to the failure that may occur. Exposure is the likelihood of the conditions under which a particular failure would result in a safety hazard. Controllability determines the extent to which the driver will be able to control the vehicle should a safety goal be breached due to the failure or malfunctioning. An ISO 26262 method provides guidance on how to assign the ASIL for a hazard once severity, exposure, and controllability are determined.
In the next step, a functional safety concept is developed for each safety goal. The functional safety concept defines functional safety requirements within the context of the vehicle architecture, including fault detection and failure mitigation mechanisms, to satisfy the safety goals. Then the technical safety concept is developed to specify the technical safety requirements within the system architecture. The technical safety concept is the basis for deriving the hardware and software safety requirements that are used for developing the product. These safety requirements have to be traced, managed and validated through product development to assure the delivery of a safe product.
RELATED: Watch a demonstration of the Jama Connect for Automotive Solution
Why is functional safety important?
Functional Safety describes a risk-based system engineering approach to avoid unreasonable risk. From a business aspect, using ISO 26262 as a guideline helps you to avoid costly product recalls due to safety hazards. Tesla recalled roughly 135,000 Model S and Model X vehicles over Touch-Screen failures in February 2021. The move came after the National Highway Traffic Safety Administration requested a safety recall. NHTSA asked for the recall because the center display in some models can fail when a memory chip runs out of storage capacity, affecting safety functions such as windshield defogging and defrosting controls, exterior turn signal lighting, and rearview backup camera display.
Following the standard minimizes the risk of harm to people and non-acceptance of your products by the market. In particular, automobile manufacturers have a legal responsibility to design their vehicles to guarantee driver, passenger, and pedestrian safety. As a consequence, automobile manufacturers can be named as defendants in a product liability suit. For example, Toyota Motors agreed to pay $1.2 billion to settle the Justice Department’s criminal investigation into whether the company hid safety defects related to unintended acceleration in 2014.
Takeaway
Functional safety is an essential part of product development and needs to be addressed early in the concept phase and considered through the full product life-cycle. ISO 26262 offers an engineering guideline and methods to avoid or at least mitigate systematic failures and random hardware failures of Electrical and Electronic Systems. The derived functional safety requirements have to be implemented at the lowest level up to the system level, both from a hardware and software perspective. This offers the ability to prove that the added E/E-systems are free of unreasonable safety risks.
The pragmatic engineering approach is to use existing knowledge, or how I call it, to use the industry’s memory. You should look at the ISO 26262 series as the framework, and set of guidelines and methods. ISO 26262 can help you with system engineering methods for a safe product and still give you some flexibility in the development process. This is especially helpful for newcomers to the automotive industry, who may lack specific automotive safety engineering experience.
Let’s put it that way, using existing engineering methods and knowledge is like standing on the shoulders of a giant – you can see further. This is even more true for automotive product safety because there is no room for trial and error.
Stay tuned: The next blog post in this series will give real-life advice on how to implement functional safety in your organization and products, and a glance at the evolution of functional safety for autonomous driving.
- Automotive Engineering and Management Methods for Modern Vehicle Development – Implementing Functional Safety for Autonomous Driving - June 8, 2021
- Automotive Engineering and Management Methods for Modern Vehicle Development – Addressing Functional Safety - May 4, 2021
- Automotive Engineering and Management Methods for Modern Vehicle Development – Industry Challenges - April 2, 2021